
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

The 17th International Conference on Mobile Systems and Pervasive Computing (MobiSPC)
August 9-12, 2020, Leuven, Belgium

Training Guidance with KDD Cup 1999 and NSL-KDD Data Sets of
ANIDINR: Anomaly-Based Network Intrusion Detection System

Benedetto Marco Serinellia,∗, Anastasija Collena, Niels Alexander Nijdama

aCentre Universitaire d’Informatique, University of Geneva, Geneva, Switzerland

Abstract

In today’s world, the protection of the computer networks remains one of the most crucial and difficult challenges in cyber security.
In this work, a passive defence system ANIDINR is presented, aiming to monitor and protect computer networks. Our effort is
focused on providing step-by-step guidance on methodologies selection and execution for the Machine and Deep Learning models’
training. Taking as an input two data sets, five MDL models are evaluated. Our goals are to minimise the percentage of Undetected
Attack, the percentage of False Alarm Rate and the overall testing time. Based on this set-up, the proposed system is capable to
predict in near-to-real time well-known and zero-day computer network attacks.
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1. Introduction

Intrusion Detection Systems (IDSs) play a key role in passive defence [1], targeting to detect malicious activity
in different application domains, such as Autonomous Vehicles (AV) [2] and Internet of Things (IoT) [3]. Further-
more, IDSs have been deployed in conjunction with active defence systems, such as honeypots. Two well known
approaches exist in IDS research: Host-based Intrusion Detection System (HIDS) and Network Intrusion Detection
System (NIDS). The first approach monitors the target machine’s network interfaces and configurations, requiring
specific settings attuned to the host machine [4]. For instance, Microsoft Windows has a different OS system config-
urations in comparison to Linux based systems, such as log files and OS calls. In contrast to the host based activity,
a NIDS monitors all incoming and outgoing packets on the computer network and is designed upon signature- and
anomaly-based approaches. A signature-based NIDS implements a predefined set of rules to detect attacks, such as
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Snort rules1. Conversely, an anomaly-based NIDS is able to detect well-known and zero network attacks through
recognition of network traffic profiles [4].

By overcoming the limitations of signature-based NIDS, such as detection of only well-known attacks and complex
up-to-date collection of the rules, we focus our efforts on developing ANIDINR: an anomaly-based NIDS in R. It is
composed of four modules, as shown in Fig.1, and one preliminary iterative phase. The Packet Sniffer module creates
network packet profiles from captured network traffic. The Training phase takes as an input the KDD Cup 1999
data set (KDD) and NSL-KDD data set (NSL-KDD), generating the Machine and Deep Learning (MDL) prediction
data structure of the computer network traffic profiles. If new data sets or MDL techniques are available, the above
mentioned phase can be repeated several times. The Prediction module loads prediction data structures of the MDL
models to evaluate the network profiles to foresee well-known and zero-day computer network attacks. Furthermore, if
the Prediction module forecasts a computer network attack, the Notification module informs the users through a user-
defined notifications, such as e-mail, Android and iOS notifications. Lastly, the Decision Making module is designed
to put in place user-defined attack mitigation strategies. The effect of the mitigation strategies is retroactively verified
by the Prediction module through new network traffic profiles.
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Fig. 1. Anomaly detection flow chart in the ANIDINR architecture

In conclusion, this research aims to describe a first evaluation of training phase with step-by-step guidance on
methodologies selection and execution to bridge the gap in the existing academic literature.

2. Related work

The KDD and NSL-KDD data sets were chosen to design the training phase of ANIDINR. Taking as an input the
same data sets, most existing studies have been based on several MDL approaches to propose intrusion detection mod-
els, such as Game Theory, Genetic Algorithm, Gaussian Naive Bayes, Logistic Regression, Decision Tree, Support
Vector Machine (SVM), Random Forest (RF) and unsupervised clustering [5, 4, 6, 7, 8]. However, there is a number
of shortcomings. Previous studies emphasised the use of accuracy to evaluate models’ performance, but accuracy
cannot be considered good metric, due to the unbalanced nature of the data sets [9], as shown in Tab. 1. In addition,
the testing time metric should be used to evaluate the time needed to predict a computer network attack. The detection
performance metrics, False Alarm Rate (FAR) and Undetected Attack (UA) [10, 11, 12], should be chosen to com-
pare models’ performance. The ANIDINR Training phase were implemented in R, due to the language characteristics
known to be powerful, popular and open source programming language for statistical computing, employed to solve
various data science competitions2. Finally, the previous studies are limited to the description of results, without pro-
viding guidelines how to dive into deep analysis phase. This paper addresses identified gap, proposing an exhaustive
explanation on data analysis phase.

1 https://www.snort.org/downloads/#rule-downloads
2 https://www.kaggle.com/
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Table 1. Number of examples for each class inside the KDD and NSL-KDD, proofing the unbalance between them

Data set Legitimate DoS Probe U2R R2L Total

KDD 70217 5728 520 50 381 76896
NSL-KDD 53561 12517 2976 50 379 69483

Table 2. Summary of research contributions on IDS

Data set Model Accuracy (%)

KDD

J48 [7] 74.60
Naive Bayes [7] 74.40
NB Tree [7] 75.40
RF [7] 74.00
Random Tree [7] 72.80
Multi-layer Perceptron [7] 78.10
SVM [7] 74.00
SVM + K-means [13] 97.75
Genetic algorithm [13] 90.00
SVM + BIRCH clustering [13] 95.70
MOGFIDS [13] 93.20
Association rules [13] 92.40
Multi-class SVM [13] 92.46
Winning the KDD99 [13] 93.30
DNN [4] 96.3
Multi-CNN [7] 86.95

NSL-KDD

DNN [4] 91.5
AE [14] 87.00
LSTM [14] 80.67
MLP [14] 81.43
L-SVM [14] 81.40
Q-SVM [14] 83.65
LDA [14] 83.17
QDA [14] 79.47

3. Training phase

The ANIDINR training phase is designed through epicycle and exploratory data analysis methodology framework
guidelines for training the models [15] and validating the use of two data sets. They are focused and limited to the
description of network protocol, connection flags, mean attack duration and application layer protocols3. From the
training data it can be observed that the amount of samples for Internet Control Message Protocol (ICMP) and User
Datagram Protocol (UDP) is smaller than the amount of Transmission Control Protocol (TCP) samples. Indeed, a vast
number of application layer protocols run over TCP protocol, such as Hypertext Transfer Protocol (HTTP) and File
Transfer Protocol (FTP). In addition, the information on connection flags allows to mitigate protocol vulnerabilities,
such as TCP Flags Invalid Combinations, TCP Fragment, Syn Flood and TCP Session Hijacking. The flag informa-
tion describes in detail the status of the connection and is not limited to a connection attempt without reply (flag

3 http://kdd.ics.uci.edu/databases/kddcup99/task.html
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S0), a connection established and not terminated (flag S1), a connection refused (flag REJ), a connection established
and terminated from source/destination due to no reply from destination/source (respectively flags S2 and S3) [16].
The mean duration attack analysis shows that Denial of Service (DoS) attacks were performed in the shortest time
possible. On the contrary, the mean duration of probe (Probe) attacks had underlined a large amount of time to gather
all necessary information. The long mean duration of Probe attacks could be attributed to the stealth scan4 to bypass
IDS, for discovering network topology, host operating system and the host’s open ports. In conclusion, the data sets
have sufficient number of records at the application layer protocols on the destination, not limited to HTTP, FTP,
Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol (IMAP), Domain Name System (DNS),
Lightweight Directory Access Protocol (LDAP), Network News Transfer Protocol (NNTP), Secure Shell (SSH), Post
Office Protocol (POP), Media Transfer Protocol (MTP), Internet Relay Chat (IRC), Telnet (Telnet) Gateway Protocol
(BGP). The aforementioned information allows to create network profiles encapsulating application protocol vulner-
abilities, such as HTTP Flooding, FTP Flooding, Telnet DoS and DNS Flood. In addition, NSL-KDD is an improved
version of the KDD, where the number of duplicated examples is significantly reduced5. To improve the quality of
classification models, duplicated records and null values were removed, reducing the complexity of the MDL models.

Lastly, grouping examples by attack types allowed to categorise the attacks by its type. Furthermore, the examples
in the data sets were grouped into the following malicious classes6 DoS (back, land, neptune, pod, smurf and teardrop),
Probe (ipsweep, nmap, portsweep and satan), Root to Local (R2L) (ftp write, guess passwd, imap, multihop, phf, spy,
warezclient and warezmaster) and User to Root (U2R) (buffer overflow, loadmodule, perl and rootkit), reformulating
the MDL problem into multi-class classification. Thus, the Training phase allows to generate computer network traffic
prediction data structure based on legitimate and four malicious classes. Specifically, ANIDINR will be able to classify
the network traffic in legitimate, DoS, Probe, R2L and U2R through Prediction module. In addition, the zero-day attack
network traffic profiles can be classified as legitimate or one of the malicious classes. However, the classification of
zero-day attack could not be accurate. The FAR and the UA perform misclassification due to the similarities of network
traffic profiles with legitimate or malicious traffic.

In conclusion, three Machine Learning models (SVM, RF and XGBoost (XGBoost)) and two Deep Learning (DL)
models (Neuralnet (Neuralnet) and Keras (Keras)) were trained on the cleaned data sets. The results are illustrated in
Tab. 3.

Table 3. Results of the training phase

Data set Model
Accuracy

(%)

DoS
FAR
(%)

Probe
FAR
(%)

R2L
FAR
(%)

U2R
FAR
(%)

UA
(%)

Testing
Time

(s)

KDD

SVM 97.15 2.71 0.10 0.26 0.00 1.97 4.16
RF 98.99 0.99 0.05 0.03 0.00 0.76 18.50
XGBoost 98.32 0.98 0.80 0.03 0.03 0.59 0.06
Neuralnet 97.84 1.24 0.26 0.10 0.05 2.34 562.20
Keras 96.85 3.08 0.36 0.50 0.00 1.02 3.10

NSL-KDD

SVM 93.80 4.91 16.70 17.80 42.86 2.12 16.60
RF 97.93 0.92 1.16 0.09 0.11 0.62 28.26
XGBoost 97.67 1.41 1.11 0.15 0.04 0.54 0.08
Neuralnet 95.28 1.52 1.90 0.09 0.00 4.09 484.08
Keras 93.82 1.87 3.19 1.31 0.00 2.42 3.90

4 https://nmap.org/book/subvert-ids.html
5 https://www.unb.ca/cic/datasets/nsl.html
6 http://kdd.ics.uci.edu/databases/kddcup99/training attack types
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4. Improvements and results

To reach better performance, several improvements were implemented to clean further the data sets for reducing
the complexity of the MDL models.

The correlation analysis allowed to remove highly correlated features from data sets. The correlated features can
be rewritten as linear combinations between them. Thus, they do not enrich the information content for the MDL
models.

Random Forest importance analysis allowed to understand how the Mean Squared Error (MSE) increases if the
features to be randomly permuted. The features, which increased the MSE, were not discarded for keeping important
information regarding computer network attacks, such as duration and the exchanged number of byte.

The operations of the integer encoding and the normalisation with mean zero and standard deviation one reduced
model complexity and misclassification errors of the DL models [17]. After performing the normalisation process,
null values were removed.

The classes distribution of a data sets was unbalanced, as shown in Tab. 1. Furthermore, the models could incor-
rectly classify U2R and R2L classes. Thus, random under-sampling technique was implemented to balance the class
distribution of a data set. The random under-sampling was applied as follows: decreasing up to 7000 the legitimate
class examples, rounding to 5000 the DoS class examples and keeping all examples for other class. Although it is a
rogue technique, random under-sampling is a widely used operation for balancing data set [18, 19]. However, it hides
three drawbacks: loss of information, the increase of the variance and the warping of the posterior distribution [18].

As shown in Tab. 3, the U2R FAR for some models are equal to 0.00%. Thus, the models always predict U2R
attacks. Although it could be considered as an excellent result, the aforementioned FAR value can be due to a mis-
classification problem. Based on the result depicted in Tab. 3, the Neuralnet model trained on the KDD shows a huge
testing time. Moreover, the performance of XGBoost models shows better performance than the SVM and RF mod-
els. Comparing XGBoost models, the model trained on the KDD achieves higher performance in terms of FAR and
testing time than the same model trained on the NSL-KDD. Based on the obtained results, XGBoost model, trained
on the KDD, achieves the best performance. Furthermore, its accuracy is also higher than the research community,
comparing Tab. 2 and Tab. 3. Finally, the accuracy of the SVM and the Random Forest models, as shown in Tab. 3
and both trained in R, is higher or closer than the research community, as illustrated in Tab. 2.

5. Conclusions and future work

In this paper the step-by-step guidance on methodologies selection and execution is proposed for ANIDINR: an
anomaly-based NIDS, designed for predicting near-to-real time well-known and zero-day computer network attacks.
The well-known computer network attack examples are used to train MDL model on the network computer attack
profiles. By its definition, network traffic associated to zero-day attack can not be described in any data set, before
forensic analysis is performed. Furthermore, the ANIDINR should be able to detect a zero-day computer network
attacks as anomaly that does not match the legitimate network traffic profiles patterns. However, it could classify
wrongly the attack class when attack will be predicted, introducing a misclassification error and erroneous attack
mitigation strategies. Moreover, an important issue arises if an adversary launches a zero-day attack, which generates
a network traffic profiles closer to the legitimate network profiles. In this case, ANIDINR will not be able to detect the
zero-day attack, identifying it as a legitimate network computer traffic. In conclusion, the results prove that XGBoost
model, trained on the KDD, reaches the best performance in terms of FAR, testing time and accuracy in comparison
to the research community models.

In the future, our efforts will be focused on the following improvements for training phase: one-hot encoding,
enlarging data sets’ dimension, K-fold cross-validation and reducing the complexity of Keras model. After each im-
provement, the model will be re-trained to re-evaluate the metrics.

The source code is available at the GitHub repository7.

7 https://github.com/marksniper/Network-Intrusion-Detection-System
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